American University of Beirut Department of Electrical and Computer Engineering EECE 290 - Analog Signal Processing Quiz I - Solution

Problem 1 (4 pts)

Why do we use Laplace transform in electrical circuits?
a) To transform signal of time domain to frequency domain.
b) To transform signal of time domain to s-domain.
c) To facilitate the complex differential calculations.
d) a and c.
e) all of the above.

If an input signal is applied to the inverting input of an op-amp with the noninverting input grounded, the output signal would have:
a) Same polarity with the input.
b) Opposite in polarity with the input.
c) Neutral polarity since the one of the inputs is grounded.
d) Cannot be determined without a numerical value of both inputs.
e) None of the above.

Reactive power:

a) Surges back and forth between electric devices.
b) It is stored in magnetic and electric fields.
c) Only occurs when E and I are out of phase.
d) All of the above
e) None of the above

In the power industry a common practice is to use parallel inductive elements to decrease the power factor just like parallel capacitors are used to increase the PF.
a) True
b) False

Problem $2(4 \mathrm{pts})$

Find i_{0} for $v_{S}=1 \mathrm{~V}$. The Op-Amp is operating in its linear mode.

Problem 3 (3 pts)

Find the total average power absorbed by the resistors. Both Op-Amp are operating in their linear modes.

a. $V_{0}^{2} / 2 R$
b. $V_{0}^{2} / 3 R$
c. $V_{0}^{2} / 4 R$
d. $V_{0}^{2} / 6 R$

The output voltage of op-amp 2 is also:
$v_{2}=V_{o} \cos \omega t$
No current flows in the resistors and their total power is 0 .
e. None of the above (specify your answer) \qquad

Problem 4 (4pts)

Consider the following op-amp circuit where $v_{1}=1 \mathrm{~V}$ and $v_{2}=2 \mathrm{~V}$

1. Determine the output voltage $v_{\mathrm{O} 1}$ of the first amplifier. (2pts)
a. -3.24 V
b. -1.32 V

$$
v_{-}=v_{+}=0 \mathrm{~V} \quad \frac{v_{01}}{22}+\frac{v_{1}}{10}=0 \Rightarrow v_{01}=-\frac{22 v_{1}}{10}=-2.2 \mathrm{~V}
$$

c. -2.2 V
d. -1.76 V
e. None of the above (specify your answer) \qquad
2. Determine the output voltage v_{O} of the op-amp circuit. (2 pts)
a. 10.87 V
b. 12.43 V
c. 16.81 V
d. 15.94 V
e. None of the above (specify your answer) \qquad

KCL at negative node of op-amp:

$$
\begin{aligned}
& \frac{v_{0}-0}{100}+\frac{v_{01}-0}{10}+\frac{v_{2}-0}{33}=0 \Rightarrow \\
& v_{\mathrm{o}}=-\left(\frac{v_{01}}{10}+\frac{v_{2}}{33}\right) \times 100=\begin{array}{l}
9.88 \mathrm{~V} \\
\\
\\
3.818 \mathrm{~V} \\
\mathrm{C}
\end{array}
\end{aligned}
$$

Problem 5 (4 pts)

Consider the following op-amp circuit. Both Op-Amp are operating in their linear modes.

1. Determine a relationship between the output voltage v_{O} and the voltage v_{C}. (2 pts)

$$
v_{-}=v_{+}=0 \mathrm{~V} \quad \frac{v_{01}}{22}+\frac{v_{1}}{10}=0 \Rightarrow v_{\mathrm{C}}=v_{\mathrm{E}}=\frac{100 v_{0}}{400}=\frac{v_{\mathrm{o}}}{4}
$$

2. Determine the output voltage v_{O} in terms of v_{s}. (2 pts)

$$
\begin{aligned}
& \text { KCL at negative node of op-amp: } \\
& \frac{v_{\mathrm{s}}-0}{25}+\frac{v_{\mathrm{o}}-0}{100}+\frac{v_{\mathrm{o}}-0}{4 \times 100}=0 \Rightarrow \\
& v_{\mathrm{o}}=-\frac{100}{25 \times\left(1+\frac{1}{4}\right)} v_{\mathrm{s}}=-3.2 v_{\mathrm{s}}
\end{aligned}
$$

Problem 6 (6 pts)

In the circuit shown below, load A receives 4 KVA at 0.8 pf lagging, device B receives 3 kVA at 0.4 pf leading, while device C is inductive and consumes 1 KW and receives 500 VAR.

1. Determine the complex power $\left(S_{A}, S_{B}, S_{C}\right)$ received by each load, and the total complex power S_{T} received by the entire system. (3 pts)

$$
\begin{aligned}
& S_{A}=4000 \times 0.8+j 4000 \times 0.6=3200+j 2400 \mathrm{VA} \\
& S_{B}=3000 \times 0.4+j 3000 \times 0.9165=1200-j 2750 \mathrm{VA} \\
& S_{C}=1000+j 500 \mathrm{VA} \\
& \\
& S_{T}=S_{A}+S_{B}+S_{C}=5400+j 150 \mathrm{VA}
\end{aligned}
$$

$$
\begin{aligned}
& S_{A}=4000 \times 0.8+j 4000 \times 0.6=3200+j 2400 \mathrm{VA} \\
& S_{B}=3000 \times 0.4+j 3000 \times 0.9165=1200-j 2750 \mathrm{VA} \\
& S_{C}=1000+j 2500 \mathrm{VA} \\
& \\
& S_{T}=S_{A}+S_{B}+S_{C}=5400+j 2150 \mathrm{VA}
\end{aligned}
$$

B

$$
\begin{aligned}
& S_{A}=4000 \times 0.8+j 4000 \times 0.6=3200+j 2400 \mathrm{VA} \\
& S_{B}=3000 \times 0.4+j 3000 \times 0.9165=1200-j 2750 \mathrm{VA} \\
& S_{C}=1000+j 5000 \mathrm{VA} \\
& S_{T}=S_{A}+S_{B}+S_{C}=5400+j 4650 \mathrm{VA}
\end{aligned}
$$

C
2. Determine the power factor of the entire system. (1 pt)

$$
\begin{aligned}
& \theta=\tan ^{-1}(150 / 5400)=1.59^{\circ} \\
& P F=\cos 1.59^{\circ}=0.9996
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}(2150 / 5400)=21.71^{\circ} \\
& P F=\cos 21.71^{\circ}=0.929
\end{aligned}
$$

$$
\begin{align*}
& \theta=\tan ^{-1}(4650 / 5400)=40.73^{\circ} \\
& P F=\cos 40.73^{\circ}=0.7578 \tag{C}
\end{align*}
$$

3. Find \mathbf{I}, given that $\mathbf{V}_{\mathbf{s}}=240<45^{0} \mathrm{~V}$ (rms). (2 pt)

$$
\begin{aligned}
& S=V I^{*} \\
& I^{*}=\frac{5402<1.59^{\circ}}{240<45^{\circ}}=22.5<-43.41^{\circ} \mathrm{A} \\
& I=22.5<43.41^{\circ}=16.35+j 15.46 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& S=V I^{*} \\
& I^{*}=\frac{5812<21.71^{\circ}}{240<45^{\circ}}=24.2<-23.29^{\circ} \mathrm{A}
\end{aligned}
$$

$$
I=24.2<23.29^{\circ}=22.23+j 9.57 \mathrm{~A}
$$

$$
\begin{aligned}
& S=V I^{*} \\
& I^{*}=\frac{7126<40.73^{\circ}}{240<45^{\circ}}=29.7<-4.27^{\circ} \mathrm{A} \\
& I=29.7<4.27^{\circ}=29.61+j 2.21 \mathrm{~A}
\end{aligned}
$$

Problem 7 (4 pts)

The lighting and motor loads of a small factory establish a 10 kVA power demand at a 0.6 lagging power factor on a $208 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.

1. Establish the power triangle of the factory load. Draw and label each component of this triangle. Show your calculations. (2 pts)

$$
\begin{align*}
& P_{L}=10,000 \times 0.6=6,000 \mathrm{~W} \\
& \theta=\cos ^{-1}(0.6)=53.13^{\circ} \\
& Q_{L}=P_{L} \tan \theta=8,000 \mathrm{~W} \\
& S_{L}=\sqrt{P_{L}^{2}+Q_{L}^{2}}=10,000 \mathrm{VA} \tag{A}
\end{align*}
$$

$$
P_{L}=10,000 \times 0.7=7,000 \mathrm{~W}
$$

$$
\theta=\cos ^{-1}(0.7)=45.57^{\circ}
$$

$$
Q_{L}=P_{L} \tan \theta=7,141 \mathrm{~W}
$$

P_{L}

$$
S_{L}=\sqrt{P_{L}^{2}+Q_{L}^{2}}=10,000 \mathrm{VA}
$$

$$
\begin{align*}
& P_{L}=10,000 \times 0.8=8,000 \mathrm{~W} \\
& \theta=\cos ^{-1}(0.8)=36.87^{\circ} \\
& Q_{L}=P_{L} \tan \theta=6,000 \mathrm{~W} \\
& S_{L}=\sqrt{P_{L}^{2}+Q_{L}^{2}}=10,000 \mathrm{VA} \tag{C}
\end{align*}
$$

2. Determine the value of a capacitor that should be placed in parallel with the load to raise the power factor to unity. (2 pts)

Note division by 0.5 is needed for no rms values

$$
\begin{aligned}
& Q_{C}=V^{2} / X_{C} \quad X_{C}=\frac{208^{2}}{8000}=6.06 \Omega \\
& C=1 /(2 \pi \times 60 \times 5.4)=490.5 \mu \mathrm{~F}
\end{aligned}
$$

A

$$
\begin{array}{ll}
Q_{C}=V^{2} / X_{C} & X_{C}=\frac{208^{2}}{7141}=5.4 \Omega \\
C=1 /(2 \pi \times 60 \times 6.06)= & 437.1 \mu \mathrm{~F}
\end{array}
$$

$$
\begin{array}{ll}
Q_{C}=V^{2} / X_{C} & X_{C}=\frac{208^{2}}{6000}=7.21 \Omega \\
C=1 /(2 \pi \times 60 \times 7.21)= & 367.4 \mu \mathrm{~F}
\end{array}
$$

Problem 8 4(pts)

Load L_{1} absorbs an average power of 10 kW at a 0.9 power factor leading; Load L_{2} has an impedance of $60+j 80 \Omega$. The voltage at the terminals of the loads is $1000 \sqrt{2} \cos 100 \pi t \mathrm{~V}$.

1. Find the rms value of the total load current \mathbf{I}_{L} in amperes. (2 pts)

$$
\begin{aligned}
& S_{1}=10-j 4 \mathrm{KVA} \\
& S_{2}=V^{2} / Z^{*}=(1000)^{2} /(60-\mathrm{j} 80)=6+\mathrm{j} 8 \mathrm{kVA} \\
& S_{L}=S_{1}+S_{2}=16+j 4 \mathrm{kVA} \\
& I_{L}=S_{L}{ }^{*} / V^{*}=(16+j 4)^{*} / 1=16-j 4 \mathrm{~A}
\end{aligned}
$$

A

$$
\begin{aligned}
& S_{1}=10-j 4 \mathrm{KVA} \\
& S_{2}=V^{2} / Z^{*}=(1100)^{2} /(60-\mathrm{j} 80)=7.26+\mathrm{j} 9.68 \mathrm{kVA} \\
& S_{L}=S_{1+} S_{2}=17.26+j 5.68 \mathrm{kVA} \\
& I_{L}=S_{L}{ }^{*} / V^{*}=(17.26+j 5.68)^{*} / 1.1=15.69-j 5.16 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}=10-j 4 \mathrm{KVA} \\
& S_{2}=V^{2} / Z^{*}=(1200)^{2} /(60-\mathrm{j} 80)=8.64+\mathrm{j} 11.52 \mathrm{kVA} \\
& S_{L}=S_{1+}+S_{2}=18.64+j 7.52 \mathrm{kVA} \\
& I_{L}=S_{L}^{*} / V^{*}=(18.64+j 7.52)^{*} / 1.2=15.53-j 6.27 \mathrm{~A}
\end{aligned}
$$

C
2. Calculate the rms voltage V_{g} of the source. Does the load voltage lead or lag the source voltage and by how many degrees? What is the active and reactive power supplied by the source? (2 pts)

$$
\begin{aligned}
V_{g} & =V_{L}+I_{L} Z_{L I N E}=1000+(0.05+j 0.5)(16-j 4) \\
& =1002.8+j 7.8 \mathrm{~V}=1002.8 \angle 0.446^{\circ} \mathrm{V}
\end{aligned}
$$

The load voltage lags the source voltage by 0.446°.
The active and reactive power supplied by the source are:

$$
S_{g}=V_{g} I_{L}^{*}=(1002.8+j 7.8)(16+j 4)=16013+j 4136 \mathrm{VA}
$$

$$
\begin{align*}
V_{g} & =V_{L}+I_{L} Z_{L I N E}=1100+(0.05+\mathrm{j} 0.5)(15.69-j 5.16 \mathrm{~A}) \tag{B}\\
& =1103.4+j 7.59=1103.4 \angle 0.394^{\circ} \mathrm{V}
\end{align*}
$$

The load voltage lags the source voltage by 0.394°.
The active and reactive power supplied by the source are:

$$
S_{g}=V_{g} I_{L}{ }^{*}=\left(1103.8 \angle 0.394^{\circ}\right)(15.69+j 5.16 \mathrm{~A})=17273+j 5812 \mathrm{VA}
$$

$$
\begin{aligned}
V_{g} & =V_{L}+I_{L} Z_{L I N E}=1200+(0.05+\mathrm{j} 0.5)(15.53-j 6.27 \mathrm{~A}) \quad \mathrm{C} \\
& =1103.9+j 7.45=1203.9 \angle 0.355^{\circ} \mathrm{V}
\end{aligned}
$$

The load voltage lags the source voltage by 0.355°.
The active and reactive power supplied by the source are:

$$
S_{g}=V_{g} I_{L}{ }^{*}=\left(1203.9 \angle 0.355^{\circ}\right)(15.69+j 6.27 \mathrm{~A})=18650+j 7664 \mathrm{VA}
$$

Problem 9 (6 pts)

Consider the two signals $x_{1}(t)$ and $x_{2}(t)$ below:

1. Write $X_{1}(\mathrm{t})$ and $X_{2}(\mathrm{t})$ in terms of step functions. (2 pts)

$$
\begin{gathered}
x_{1}(t)=2[u(t)-u(t-1)] \\
x_{2}(t)=[u(t-1)-u(t-3)]
\end{gathered}
$$

2. Determine the Laplace transform $X_{1}(s)$ of $X_{1}(\mathrm{t})$ and $X_{2}(s)$ of $X_{2}(t)$. (2 pts)

$$
\begin{gathered}
X_{1}(s)=\frac{2}{s}-2 \frac{e^{-s}}{s} \\
X_{2}(s)=\frac{e^{-s}}{s}-\frac{e^{-3 s}}{s}
\end{gathered}
$$

3. Let $Y(s)=X_{1}(s) \cdot X_{2}(s)$. Determine $y(t)$ by the inverse Laplace transform of $Y(s) .(2 \mathrm{pts})$

$$
\begin{gathered}
X_{1}(s) X_{2}(s)=\frac{2 e^{-s}}{s^{2}}-2 \frac{e^{-3 s}}{s^{2}}-2 \frac{e^{-2 s}}{s^{2}}+2 \frac{e^{-4 s}}{s^{2}} \\
y(t)=2(t-1)-2(t-3)-2(t-2)+2(t-4)
\end{gathered}
$$

Problem 10 (4 pts)

The Laplace transform function representing the output voltage of a network is expressed as

$$
V_{0}(s)=\frac{120}{s(s+10)(s+20)}
$$

1. Determine the value of this voltage at $t=1 \mathrm{~s}$. (Hint solve for $\left.v_{0}(t)\right)(3 \mathrm{pts})$

$$
V_{0}(s)=\frac{120}{s(s+10)(s+20)}=\frac{K_{1}}{s}+\frac{K_{2}}{s+10}+\frac{K_{3}}{s+20}
$$

For $s=0, K_{1}=3 / 5$
For $s=-10, K_{2}=-6 / 5$
For $s=-20, K_{3}=3 / 5$
Using Laplace inverse:

$$
v_{0}(t)=\left(\frac{3}{5}-\frac{6}{5} * e^{-10 t}+\frac{3}{5} * e^{-20 t}\right) * u(t)
$$

For Version B the gain is 240, so multiply all coefficients by 2
For Version B the gain is 360 , so multiply all coefficients by 3
2. Find the final value of the voltage without using $v_{0}(t)$. (1 pts)

Using final value theorem: $v_{0}(\infty)=\mathrm{s} V_{0}(s)$ at $s=0=\frac{120}{(10 * 20)}=0.6 \mathrm{~V}$
For Version B the final value is 1.2 V

For Version C the final Value is 1.8 V

Problem 11 (7 pts)

Consider the following circuit diagram where it is required to determine the voltage $v_{0}(t)$ for $t>0$, with the initial conditions being zero.

1. Draw the s-domain equivalent circuit (2 pt)

2. Solve for the s-domain voltage $\mathrm{V}_{0}(\mathrm{~s})(2 \mathrm{pts})$

Write KCL at node V_{1}

$$
\frac{V_{1}-\frac{2}{s}}{2 s}-\frac{2}{s}+\frac{V_{1}}{4+\frac{1}{s}}=0
$$

Solve for V_{1}

$$
V_{1}=\frac{2(2 s+1)(4 s+1)}{s\left(2 s^{2}+4 s+1\right)}
$$

V_{0} is obtained from V_{1} by voltage division

$$
V_{o}=V_{1}\left(\frac{2}{4+\frac{1}{s}}\right)=\frac{4(2 s+1)}{2 s^{2}+4 s+1}=\frac{A}{s+0.9}+\frac{B}{s+1.71}
$$

3. Obtain a time-domain expression for the voltage $v_{0}(t)(3 \mathrm{pts})$

$$
\begin{aligned}
& V_{o}=\frac{4(2 s+1)}{2 s^{2}+4 s+1}=\frac{A}{s+0.9}+\frac{B}{s+1.71} \\
& v_{o}(t)=\left(0.59 e^{-0.29 t}+3.41 \mathrm{e}^{-1.71 t}\right) u(t) \mathrm{V}
\end{aligned}
$$

